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Abstract
The influence of bias illumination level and carrier diffusion on the modulated
photocurrents (MPCs), measured in amorphous solids in a sandwich electrode
configuration, is investigated theoretically. Based on the multiple-trapping
model the approximate formulae for MPCs, taking into account the mentioned
physical factors, are derived. It is demonstrated that the absolute magnitude
of the density of states can be determined from the MPC frequency spectra,
measured at suitable bias illumination intensities. The carrier diffusion affects
the MPCs solely for relatively high modulation frequencies and/or low applied
voltages. The criterion for neglecting the diffusion effect is given. The
corresponding frequency dependences of the photocurrent phase shift and
amplitude as well as of the related quantities, calculated for the exponential
trap distribution, are presented.

Notation2

d sample thickness (cm)
e elementary charge (C)
g(x, t) carrier generation rate (cm−3 s−1)
k Boltzmann constant (eV K−1)
ic(x, t) conduction current density (A cm−2)
iin injection current density (A cm−2)
n(x, t) free carrier density (cm−3)
nt(x, t) trapped carrier density (cm−3)

1 Author to whom any correspondence should be addressed.
2 Also refers to I.
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n′
t(x, t, ε) trapped carrier density per energy unit (cm−3 eV−1)

t time (s)
x distance from front electrode (cm)
Ct carrier capture coefficient (cm3 s−1)
D0 diffusion coefficient (cm2 s−1)
E(x, t) electric field strength (V cm−1)
I (t) photocurrent intensity (A)
Nt(ε) trap density per energy unit (cm−3 eV−1)
Ntot total density of traps (cm−3)
S sample area (cm2)
T sample temperature (K)
Tc characteristic temperature of exponential trap distribution (K)
V voltage applied to sample (V)
α dispersion parameter
α0 coefficient of light absorption (cm−1)
γ ‘damping coefficient’ of carrier-density wave
ε trap depth (eV)
εf(x) quasi-Fermi level (eV)
εm depth of discrete trap level (eV)
ε0 demarcation level (eV)
κ dielectric constant
κ0 permittivity of free space (F cm−1)
µ0 microscopic carrier mobility (cm2 V−1 s−1)
ν0 frequency factor (s−1)
ϕ phase shift of carrier-density wave
φI phase shift of MPC
σ0 sample dc photoconductance (	−1 cm−1)
τM Maxwell relaxation time referring to stationary sample

photoconductivity (s)
τr(ε) mean carrier dwell time in the trap (s)
τ0 free-carrier time of flight (s)
ω angular frequency of light modulation (s−1)
ωf angular frequency at which ε0 and εf coincide (s−1)
ωn angular frequency corresponding to MPC phase shift nth maximum (s−1)
�Im MPC amplitude (A)
(x) carrier release-time distribution function (s−1)
̃(x) Fourier transform of (x)

1. Introduction

The localized states in the forbidden energy gap of amorphous solids strongly influence
their photoconductive properties. Therefore the investigation of photocurrents in amorphous
materials under various experimental conditions yields useful information about the energetic
density of states (DOS). One of these techniques is the modulated photocurrent (MPC) method.
It consists of the carrier photogeneration or photoinjection into the sample by sinusoidally
modulated light. The resulting photocurrent phase shift with respect to the modulated light
and amplitude is measured, usually as a function of modulation frequency.
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The MPC technique was primarily used in experiments on samples with coplanar
electrodes. The theoretical description of the method, as well as the results of MPC
measurements in CdS, were given by Oheda [1]. The theory has been extended by Brüggemann
et al [2], Hattori et al [3, 4], Longeaud and Kleider [5, 6], Reynolds et al [7] as well as by
Kounavis [8]. In particular, alternative approaches for the analysis of the experimental data
have been developed. This method has been applied for investigating the energetic DOS profile
in several amorphous solids, e.g. in a-As2Se3 [9] and a-Si:H [10].

The first MPC measurements in a sandwich electrode configuration have been performed
by Schumm and Bauer [11] in a-Si:H in order to determine both the energetic and spatial DOS.
The spatial sensitivity of this method was then investigated numerically by Brüggemann et al
[12]. The results of the MPC measurements in a sandwich-cell structure have also been given
in [13, 14] for a-Si:H, in [15] for copper phthalocyanine and in [16] for poly-(N-vinylcarbazole).
In the papers [11, 13, 15] the modified Oheda theory has been utilized. The more rigorous
theoretical descriptions have been published by Tomaszewicz [17] and Hattori et al [18] for
the case of surface carrier photogeneration and by Grygiel and Tomaszewicz [19] for finite
absorption depth of the light, generating the carriers.

In the present work we examine the influence of trap saturation, depending on the intensity
of the bias illumination component, as well as the influence of the carrier diffusion on the
MPCs, measured in the sandwich sample configuration. This paper constitutes a continuation
of the investigations reported in [19], hereafter referred to as I. The corresponding multiple-
trapping (MT) transport equations are similar to those of I and are presented here in an
abbreviated manner.

2. Formulation of the problem

We shall consider here the MPC experiment, performed on the insulating sample with sandwich
electrodes. Technical details can be found, for example, in [11]. The basic simplifying
assumptions are:

(i) The MPCs are due to transport of one-sign excess carriers, for instance electrons. This
occurs when the carriers are injected from the illuminated electrode or are generated in a
thin surface layer of the sample by strongly absorbed light. These processes are, in fact,
equivalent, as proved in appendix A.

(ii) Both the sample dark conductance and photoconductance are very low, to preclude
screening of excess carriers by the carriers of opposite sign. In particular, the condition
ω � 1/τM, with ω the angular frequency of light modulation and τM the Maxwell
relaxation time referring to the stationary sample photoconductivity, is valid (cf I).

(iii) The electric field as well as the stationary carrier distribution in the sample are uniform.
This should be the case when an external field is much higher than the space charge
field. One can notice that the carrier diffusion must cause some inhomogeneities of the
steady-state carrier distribution. However, for a high applied field the inhomogeneities are
expected to occur only in the narrow near-electrode regions and do not affect significantly
the MPC.

(iv) The process of neutralization of the opposite-sign carriers, arriving at the electrodes, is
very fast.

(v) The possible energy dependences of the carrier capture coefficient and the frequency factor
are ignored.
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2.1. Transport equations

Subject to the above assumptions, the MT carrier transport is governed by the continuity
equation:

∂

∂x
[ic(x, t)/e] +

∂

∂ t
[n(x, t) + nt(x, t)] = 0, (1)

where

ic(x, t) = eµ0 E0n(x, t) − eD0
∂n(x, t)

∂x
, (2)

and by the equations describing the carrier trapping/detrapping kinetics:

∂n′
t(x, t, ε)

∂ t
= Ct[Nt(ε) − n′

t(x, t, ε)]n(x, t) − n′
t(x, t, ε)

τr(ε)
, (3)

with

nt(x, t) =
∫ ∞

0
n′

t(x, t, ε) dε. (4)

Here, x denotes the distance from the front electrode of the sample, t and ε stand for the
time and energy variable (ε is measured from the edge of the conduction band), ic(x, t) is the
conduction current density in the sample, n(x, t) and nt(x, t) are the free- and trapped-carrier
densities, n′(x, t, ε) and Nt(ε) are the densities of trapped carriers and trapping levels per unit
of energy, respectively, and τr(ε) = ν−1

0 exp(ε/kT ) is the mean carrier dwell time in the trap
(ν0 is the frequency factor, k is the Boltzmann constant and T is the sample temperature).
The remaining parameters are: e the elementary charge, µ0 the microscopic mobility, D0 the
diffusion coefficient, Ct the capture coefficient and E0 = V/d the electric field strength (V
denotes the applied voltage and d the sample thickness).

The current intensity induced in the measuring circuit is determined by the formula

I (t) = S

d

∫ d

0
ic(x, t) dx (5)

where S is the sample area.
In order to illustrate the characteristic features of the resulting MPCs, the exponential trap

distribution in the energy gap is chosen:

Nt(ε) = Ntot

kTc
exp

(
− ε

kTc

)
(6)

with Ntot the total trap density and Tc the characteristic temperature. All the numerical results,
given in the paper, have been obtained for the above DOS profile.

2.2. Linearized transport equation

In the following the carrier photoinjection is considered, since the treatment of the diffusion
effect on the MPCs is then simpler. The density of the injection current, due to light intensity
varying sinusoidally with time, can be expressed as

iin(t) = i0in + �iin exp(iωt) (7)

with ω the angular modulation frequency. We shall consider here the solutions of linearized
MT equations, subject to the condition �iin � i0in. The solutions are then expected to have a
form analogous to (7), e.g.

n(x, t) = n0 + �n(x) exp(iωt). (8)
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Here, �n(x) is the complex function that determines both the amplitude and phase of the
oscillating component of carrier concentration. According to the common convention, only
real parts of the solutions are of physical significance. To simplify the notation, we shall not
indicate the dependence of solutions on the modulation frequency. Inserting these expressions
into equations (1)–(4), retaining only the first power oscillating terms and assuming that
|�n(x)| � |�nt(x)|, after some calculations one obtains the differential equation

−D0
d2�n(x)

dx2
+ µ0 E0

d�n(x)

dx
+ iω̃�n(x) = 0. (9)

Here, the function

̃ = Ct

∫ ∞

0

τr(ε)Nt(ε) dε

[1 + Ctn0τr(ε)][1 + (iω + Ctn0)τr(ε)]
(10)

is the Fourier transform of the carrier release-time distribution function (cf I). The boundary
conditions for equation (9) depend on the problem considered and will be specified in the next
sections.

Inserting formula (2) into equation (5), one obtains the following expression for the ac
component of the MPC:

�I = eS

d

{
µ0 E0

∫ d

0
�n(x) dx + D0[�n(0) − �n(d)]

}
. (11)

In what follows, the solutions of equation (9) are given and the behaviour of the MPCs is
examined as influenced by trap saturation and carrier diffusion.

3. The influence of bias illumination intensity on the MPCs

3.1. Expression for the MPC

In this section we shall ignore the influence of diffusion on the carrier transport, setting D0 = 0.
The boundary condition at an illuminated electrode has the form of �ic(0) = �iin which,
according to equation (2), results in

�n(0) = �iin/eµ0 E0. (12)

Integrating equation (9) one then gets

�n(x) = �iin

eµ0 E0
exp

(
− iω̃x

µ0 E0

)
(13)

and the formula (11) for the ac component of the photocurrent is

�I = �I0
1 − exp(−iωτ0̃)

iωτ0̃
(14)

with

�I0 = �iin S (15)

and τ0 = d/µ0 E0 is the free-carrier time-of-flight. The above formulae have already been
obtained in [17, 18] and I. However, the influence of trap saturation on the MPCs has not been
considered so far.

In the following it is convenient to introduce the functions (see [17], I)

ϕ = ωτ0 Re ̃, (16)

γ = −ωτ0 Im ̃. (17)
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From equation (13) it results that �n(d) = �n(0) exp(−iϕ − γ ). Thus, ϕ and γ represent,
respectively, the phase and the ‘damping coefficient’ of the free-carrier-density wave at x = d .
With these notations, formula (14) for the photocurrent takes the form of

�I = �I0
1 − exp(−iϕ − γ )

iϕ + γ
. (18)

3.2. Approximate formulae for the functions ϕ and γ

The influence of a steady-state component of the illumination intensity is characterized by the
relative positions of the demarcation level ε0 [1] and the quasi-Fermi level εf . These quantities
are defined implicitly by τr(ε0) = 1/ω and τr(εf) = 1/Ctn0, that is

ε0 = kT ln(ν0/ω), (19)

εf = kT ln(ν0/Ctn0). (20)

It is useful to define the limiting frequency

ωf = Ctn0, (21)

at which the levels ε0 and εf coincide. For sufficiently high bias illumination intensity one
can distinguish two ranges of modulation frequency: ω � ωf and ω � ωf , corresponding
to ε0 < εf and ε0 > εf , respectively. In these frequency regions the expressions for ϕ and γ

simplify considerably.
In the ω � ωf domain, the factors Ctn0τr(ε) in equation (10) for ̃ can be omitted. For a

wide distribution of localized states, varying slowly in the kT energy range,one obtains [17, 18]

ϕ � π

2
kT τ0Ct Nt(ε0), (22)

and

γ � τ0Ct

∫ εf

ε0

Nt(ε) dε. (23)

In this frequency region the dependence of ϕ and γ on the modulation frequency is determined
by the DOS form and, as regards γ , by the position of the quasi-Fermi level. In particular, for
the exponential trap distribution (6) and extremely low trap filling, the relationships ϕ, γ ∝ ωα

hold (with α = T/Tc the dispersion parameter).
In the ω � ωf domain, for a slowly varying distribution of localized states one gets (see

appendix B)

ϕ � kT τ0Ct Nt(εf)
ω

ωf
, (24)

γ � 1

2
kT τ0Ct Nt(εf + kT ln 2)

(
ω

ωf

)2

. (25)

Thus, in this frequency range, ϕ ∝ ω and γ ∝ ω2. Analogous formulae, referring to the
MPC experiment in a coplanar sample configuration, were given by Oheda [1] as well as by
Longeaud and Kleider [5]. From equations (22)–(25) it follows that the functions ϕ and γ

change their form in the vicinity of the limiting frequency ωf .
The above-described features are illustrated by figures 1–3. Figure 1 exhibits the plots of

functions ϕ and γ versus ω, computed from equations (16), (17) and (10), for four positions
of the quasi-Fermi level. It can be seen that in the initial frequency range the courses of the
mentioned functions, particularly of γ , change with the shift of quasi-Fermi level towards the
shallower traps. This reflects the progressive trap filling due to increasing bias excitation.
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Figure 1. The phase (a) and the damping coefficient (b) of a free-carrier density wave for
exponential trap distribution (6) and different positions of the quasi-Fermi level. The calculations
were carried out for α = 0.8, τ0ν0 = 10−5 and Ct Ntot/ν0 = 1013.

Figure 2. The phase (a) and the damping coefficient (b) of the free-carrier wave computed for the
exponential distribution of traps. α = 0.8, εf/kT = 26; other parameters are as for figure 1. Full
curves represent the exact equations (16) and (17), the dotted ones marked by ‘1’—approximate
formulae (24) or (25), the dotted curves marked by ‘2’—approximate formulae (22) or (23). The
curves marked ‘3’ are obtained from (16) and (17) for extremely small trap filling.

Figures 2 and 3 display the functions ϕ and γ versus ω, calculated for different values of the
dispersion parameter α and the same quasi-Fermi level position. For the sake of comparison,
the dependences computed from the exact equations (16), (17) and (10) (full curves), as well as
from the approximate ones (22)–(25) (dotted curves), are presented. According to the figures,
the exact and approximate functions for ω � ωf and ω � ωf differ solely in the values of
multiplicative coefficients. As expected, the discrepancies diminish with decreasing parameter
α, since the DOS then varies more slowly with energy.
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Figure 3. The phase (a) and the damping coefficient (b) of the free-carrier wave computed for the
exponential trap distribution. α = 0.5, εf/kT = 26; other parameters and notations are as for
figure 2.

Figure 4. Frequency characteristics of the MPC phase shift (a) and amplitude (b) for exponential
distribution of traps and different positions of the quasi-Fermi level. The parameters of the
calculations are the same as in figure 1.

3.3. Determination of DOS from the MPCs

The measured photocurrent can be expressed as

�I = �Im exp(−iφI), (26)

where �Im and φI are the MPC amplitude and phase shift. Comparing this equation with
equation (18), one obtains the relationships between the functions ϕ and γ and the functions
�Im and φI (cf I).

The influence of optical bias level on the MPC phase shift and amplitude is illustrated in
figure 4. These quantities were calculated from equations (18) and (26) for the same positions
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of the quasi-Fermi level as in figure 1. As can be seen, with increasing trap saturation the
damped oscillations of φI become more and more distinct and their maxima slightly shift
towards higher frequencies. This indicates that the carrier transport becomes less and less
dispersive (cf I). Figure 4(b) shows that, for sufficiently high optical bias level, �Im � �I0

in the low-frequency range which allows us to determine the value of �I0 from experimental
data.

In order to obtain information about the DOS one has to determine first the dependence of
the functions ϕ and γ on the modulation frequency from the measured frequency characteristics
of the MPC phase shift φI and amplitude �Im. This can be done with the use of numerical
methods from the overall courses of the MPCs or with the aid of the approximate formulae,
valid in certain frequency domains (see [17, 18] and I). Next, the energetic DOS may be
determined from the approximate equations (22)–(25). It should be noticed that

Ct

µ0
= eωf

σ0
, (27)

where σ0 = eµ0n0 is the sample dc photoconductance. Since the value of ωf can be estimated
from the frequency characteristics of ϕ and γ , obtained for sufficiently high steady-state
illumination intensity, the approximate value of Ct/µ0 can also be found. It is thus seen that
equations (22) and (23), valid for ω � ωf , enable us to calculate Nt(ε0) and

∫ εf

ε0
Nt(ε) dε,

respectively. On the other hand, equations (24) and (25), being valid for ω � ωf , make it
possible to calculate, respectively, Nt(εf) and Nt(εf + kT ln 2). Therefore the energetic DOS
can be found both from the frequency characteristics of ϕ and γ in the region ω � ωf as
well as from the dependence of these characteristics on bias intensity for ω � ωf . Analogous
treatment has been proposed for the MPCs measured in a coplanar sample configuration [5, 8].

In order to determine the energy scale, i.e. the actual positions of ε0 and εf levels in the
energy gap, the value of the frequency factor ν0 must be known. This value can be estimated
on the basis of temperature dependences of the φI and/or �Im frequency characteristics and
several ways could be proposed. We shall consider here the frequency region ω � ωf and
assume that the temperature dependences of CtT/µ0 and Ct/µ0 in equations (22) and (23) are
negligible. In this case the quantities ϕ and γ and, as a consequence, �Im and φI depend on
the temperature only via the demarcation energy ε0 and the approximate scaling laws hold:

φI = φI[T ln(ω/ν0)], (28)

�Im = �Im[T ln(ω/ν0)]. (29)

Therefore, the plots of φI and �Im versus T ln(ω/ν0), obtained from the MPC measurements
at different temperatures, should almost superimpose, which allow us to determine the value
of ν0. The mentioned scaling property is illustrated by figure 5. In calculations of φI and �Im

the negligible trap occupancy,εf → ∞, was assumed and the possible temperature dependence
of Ct/µ0 was ignored. One can conclude that the scaling law for �Im is better fulfilled than
that for φI. The deviations follow from the approximate character of equations (22) and (23)
and from the presence of the multiplicative factor T in the former equation.

4. The influence of carrier diffusion on MPCs

4.1. Expression for the MPC

The general solution of the transport equation (9), taking into account the carrier diffusion, has
the form of

�n(x) = C1 exp(−λ1x) + C2 exp(−λ2x). (30)
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Figure 5. The frequency dependences of the MPC phase shift (a) and amplitude (b) for the
exponential trap distribution and different temperatures, plotted versus T ln(ω/ν0)/T0. The
parameter T0/Tc = 0.5: other parameters are the same as in figure 1.

The coefficients λ1 and λ2 are the roots of the characteristic equation

D0λ
2 + µ0 E0λ − iω̃ = 0 (31)

and are given by

λ1,2 =
(

±
√

µ2
0 E2

0 + 4iD0ω̃ − µ0 E0

) /
2D0. (32)

By the
√

z function we mean here its branch, fulfilling the condition limz→r
√

z = +
√

r (z and
r > 0 stand for the complex and real variable, respectively).

The coefficients C1 and C2 in the solution (30) have to be determined from the suitable
boundary conditions. According to equation (2) the boundary condition at the illuminated
electrode, �ic(0) = �iin, now takes the form of

µ0 E0�n(0) − D0
d�n(x)

dx

∣∣∣∣
x=0

= �iin

e
. (33)

From the physical point of view, the second boundary condition should be formulated at the
collecting electrode, for x = d . The corresponding solution, concerning the case of very fast
carrier neutralization, is given in appendix C. However, a much simpler solution is obtained
subject to the condition that the oscillating term of the free-carrier density vanishes at infinite
distance from the illuminated electrode:

lim
x→∞ �n(x) = 0. (34)

Since, as can be shown, Re λ1 > 0 and Re λ2 < 0, the above condition implies that C2 = 0
in the solution (30). Then, from the condition (33) one obtains C1 = −�iin/eD0λ2 and the
expression (30) takes the form of

�n(x) = − �iin

eD0λ2
exp(−λ1x). (35)

According to equation (11), the resulting formula for the ac term of the photocurrent is

�I = −�I0

λ2d

(
µ0 E0

D0λ1
+ 1

)
[1 − exp(−λ1d)], (36)

with the current intensity �I0 given by equation (15).
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4.2. Criterion for omitting the carrier diffusion

Formula (36) for MPC seems too complicated to be useful for determination of the DOS.
However, it enables us to establish the criterion for omitting the influence of carrier diffusion.
Let us assume the electric field strength E0 being so high that the inequalities

Re ̃, Im ̃ � µ2
0 E2

0/ωD0 (37)

are fulfilled in the frequency region considered. Then the coefficients λ1 and λ2, given by the
formula (32), are approximately equal to

λ1 � iω̃

µ0 E0
, (38)

λ2 � −µ0 E0

D0
. (39)

It can be seen that formulae (35) and (36) for the oscillating components of free carrier density
and photocurrent reduce then to formulae (13) and (14), in which the carrier diffusion is
ignored. Thus, the inequalities (37) are the sufficient conditions for neglecting the diffusion
effects. Taking into account the definitions (16) and (17) of ϕ and γ as well as the Einstein
relationship,

µ0

D0
= e

kT
, (40)

from (37) one gets the conditions

ϕ, γ � eV/kT . (41)

This criterion, derived in a less rigorous way, was primarily given in [17]. In experimental
practice usually eV/kT � 1. As shown in I, for the frequency ω1, corresponding to the first
maximum of the MPC phase shift φI, the functions ϕ � 1 and γ � 1. Therefore, from the
conditions (41) it results that the carrier diffusion affects mainly the MPC courses for relatively
high modulation frequencies, ω � ω1.

In figure 6 the MPC courses, obtained from equation (36) for different values of the
parameter eV/kT , and the case of negligible trap filling are shown. It is understood that
separate curves refer to samples of different thicknesses, so that the carrier time-of-flight τ0

remains constant. One can see that the diffusion effects are significant only for relatively low
voltages, eV/kT � 4 × 102, and are more pronounced in the high-frequency region. With
decreasing voltage the oscillations of φI are more and more strongly damped, whereas the
courses of �Im remain almost unaffected. For extremely low values of eV/kT = 4 one
observes only a single wide maximum of φI and a marked increase of the �Im values in the
high-frequency region.

Figure 7 displays the spatial distributions of free carriers, obtained for the frequency ω1,
corresponding to the first maximum of φI in figure 6(a). The curves have been computed
from the formulae (35) as well as (C.2) for several values of the reduced voltage eV/kT . As
can be seen, the diffusion significantly influences the carrier distribution only for relatively
low voltages. The differences in the carrier concentration at the illuminated electrode are due
to the phase shift of �n(0) with respect to �iin. With decreasing voltage the length of the
carrier density wave increases and the wave damping becomes more and more strong. The
discrepancies in the spatial distributions of the carriers calculated from equations (35) and (C.2),
which refer to different boundary conditions, decrease with rising values of eV/kT and are
meaningful only for eV/kT � 40. This indicates that the form of the boundary conditions
does not have a significant influence on the MPCs, except for extremely low voltages.
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Figure 6. The MPC phase shift (a) and amplitude (b) for the exponential trap distribution and
different values of the relative voltages. The remaining parameters are as for figure 1.

Figure 7. The spatial distribution of free carriers (real parts of oscillating terms) computed for
different relative voltages. The curves marked by ‘1’ were calculated from (35), while those marked
by ‘2’ were from (C.2). The parameters are as for figure 1.

5. Conclusions

In this paper we have investigated the influence of bias illumination intensity and carrier
diffusion on the MPCs. The results given concern the photocurrents following the carrier
photoinjection or surface generation. It has been shown that the measurements of the MPC
frequency characteristics in suitable ranges of optical bias level and temperature enable us to
determine the absolute values of the DOS and the values of Ct/µ0 and ν0. The DOS profile
can be determined from the frequency courses of the functions ϕ and γ , obtained for ω � ωf ,
as well as from their steady-state illumination dependences for ω � ωf . It should be recalled
that the form of DOS can also be found from the dependence of the position of the MPC
phase shift maxima on the applied voltage and/or sample thickness (cf I). The carrier diffusion
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significantly affects the MPCs only for relatively low values of applied voltage and/or for
relatively high modulation frequencies.

Appendix A. Equivalence of carrier photoinjection and carrier photogeneration in a
thin surface layer of the sample

In the case of electron photoinjection, yielding the injection current density iin(t), integration
of the continuity equation (1) with the boundary condition ic(0, t) = iin(t) gives

ic(x, t)/e +
d

dt

∫ x

0
[n(x ′, t) + nt(x ′, t)] dx ′ = iin(t)/e. (A.1)

On the other hand, for the case of carrier photogeneration the continuity equation for the
electron densities has the form of

∂

∂x
[ic(x, t)/e] +

∂

∂ t
[n(x, t) + nt(x, t)] = g(x, t), (A.2)

with g(x, t) the carrier generation rate. If the carriers are generated in a thin near-electrode
layer, the electron–hole recombination as well as the contribution of the hole current component
to the MPC can be neglected. For surface carrier generation the function g(x, t) can be
expressed as

g(x, t) � dḡ(t)δ(x − 0+), (A.3)

where ḡ(t) denotes the spatial average of g(x, t) and δ(· · ·) is the Dirac delta function. Then,
integration of equation (A.2) with the boundary condition ic(0, t) = 0 yields

ic(x, t)/e +
d

dt

∫ x

0
[n(x ′, t) + nt(x ′, t)] dx ′ = dḡ(t), x > 0. (A.4)

From the comparison of equations (A.1) and (A.4) it follows that both considered processes
are equivalent, provided that

iin(t) = edḡ(t). (A.5)

Appendix B. Approximation of functions Re Φ̃ and Im Φ̃ in the ω � ωf domain

Calculating the real and imaginary parts of the function ̃ given by equation (10), and taking
into account the inequality ω � ωf = Ctn0, one obtains:

Re ̃ � Ct

∫ ∞

0

τr(ε)Nt(ε) dε

[1 + ωfτr(ε)]2
, (B.1)

Im ̃ � −ωCt

∫ ∞

0

τ 2
r (ε)Nt(ε) dε

[1 + ωfτr(ε)]3
. (B.2)

The factors τr(ε)/[1 + τr(ε)]2 and τ 2
r (ε)/[1 + τr(ε)]3 in the integrands are the peaked functions

of ε, achieving their maxima for ε = εf and εf + kT ln 2, respectively. If the trap density Nt(ε)

varies slowly with energy compared to these functions and ωf � ν0, the integrals in (B.1)
and (B.2) can be approximated as follows:

Re ̃ � Ct Nt(εf)

∫ ∞

0

τr(ε) dε

[1 + ωfτr(ε)]2
� Ct Nt(εf)

kT

ωf
, (B.3)

Im ̃ � −ωCt Nt(εf + kT ln 2)

∫ ∞

0

τ 2
r (ε) dε

[1 + ωfτr(ε)]3

� −ωCt Nt(εf + kT ln 2)
kT

2ω2
f

. (B.4)

Then, from the formulae (16) and (17) one gets the expressions (24) and (25).
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Appendix C. Expression for MPC in the case of meaningful carrier diffusion and fast
carrier neutralization at the collecting electrode

We shall give here the solution of equation (9), provided that the free carriers are very quickly
neutralized on the collecting electrode. The corresponding boundary condition has the form
of

�n(d) = 0. (C.1)

Determining the coefficients C1 and C2 in the general solution (30) from the conditions (33)
and (C.1) one obtains

�n(x) = �iin[exp(−λ1x − λ2d) − exp(−λ2x − λ1d)]

eD0[λ1 exp(−λ1d) − λ2 exp(−λ2d)]
. (C.2)

Inserting this expression into equation (11) yields the following formula for the MPC:

�I = �I0

d[λ1 exp(−λ1d) − λ2 exp(−λ2d)]
×

{
µ0 E0

D0

{
1

λ1
[1 − exp(−λ1d)] exp(−λ2d)

− 1

λ2
[1 − exp(−λ2d)] exp(−λ1d)

}
− exp(−λ1d) + exp(−λ2d)

}
. (C.3)

Appendix D. Erratum to I

In I there is an error in equation (B.3). This equation should be

µ0 E0(x)

1 + ̃(x)

d�E(x)

dx
+

[
iω +

1

τM (x)

]
�E(x) = e

κκ0

∫ x

0
�g(x ′) dx ′ + iω�E(0).

We apologize for the mistake.
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